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Abstract. Fisheries bycatch is a worldwide conservation issue. Despite a growing
awareness of bycatch problems in particular ocean regions, there have been few efforts to
identify spatial patterns in bycatch events. Furthermore, many studies of fisheries bycatch
have been myopic, focusing on a single species or a single region. Using a range of analytical
approaches to identify spatial patterns in bycatch data, we demonstrate the utility and
applications of area and point pattern analyses to single and multispecies bycatch seascapes of
pelagic longline fisheries in the Atlantic and Pacific Oceans. We find clear evidence of spatial
clustering within bycatch species in both ocean basins, both in terms of the underlying pattern
of the locations of bycatch events relative to fishing locations and for areas of high bycatch
rates. Furthermore, we find significant spatial overlap in the pattern of bycatch across species
relative to the spatial distribution in fishing effort and target catch. These results point to the
importance of considering spatial patterns of both single and multispecies bycatch to meet the
ultimate goal of reducing bycatch encounters. These analyses also highlight the importance of
considering bycatch relative to target catch as a way of identifying areas where fishing effort
reduction may help to reduce multispecies bycatch with minimal impact on target catch.
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INTRODUCTION

Bycatch is a conservation concern for fisheries around

the world (Kelleher 2005). Also termed ‘‘incidental’’ or

‘‘unwanted catch,’’ bycatch includes both discarded

individuals of target species and nontarget species. Of

particular concern is the bycatch of long-lived oceanic

vertebrates, such as sea turtles, seabirds, marine

mammals, and sharks (Heppell et al. 2000, Lewison et

al. 2004a). Studying bycatch of these vulnerable species

is challenging due to the relative rarity of bycatch events

for these species by individual vessels (Crowder and

Murawski 1998) and the paucity of detailed, high-

quality data on bycatch (Lewison and Crowder 2007).

However, several studies point to the detrimental

cumulative effects from bycatch when considered across

fleets and gear types (Crowder 2000, Lewison et al.

2004b, Tomillo et al. 2007).

Although bycatch is ubiquitous across ocean basins

and all types of fishing gear, bycatch of vulnerable

species (i.e., those that are impacted by bycatch or have

been identified as a species of conservation concern) is

not uniformly distributed. By their very nature, spatial

location and extent of bycatch are central to manage-

ment questions and subsequent strategies designed to

reduce bycatch (e.g., locations of mandatory mitigation

gear/practices and temporary closures or effort redistri-

butions). For example, fleet communication has emerged

as a successful method for identifying transient high-

bycatch areas (Gilman et al. 2006). Several U.S. fisheries

(U.S. North Atlantic longline swordfish fishery, U.S.

North Pacific and Alaska trawl fisheries, and U.S.

Alaska demersal longline fisheries) use near real-time

reporting of bycatch rates to help reduce fisheries

bycatch in an efficient, cost-effective manner.

A logical complement to these small-scale, short-term

approaches would be an analysis designed to identify

underlying spatial patterns in bycatch over longer

periods, thereby allowing for the identification of

spatially persistent areas of high bycatch. Yet, there

have been few analyses along these lines (but see

Gardner et al. 2008, Sims et al. 2008). Furthermore,

the majority of bycatch analyses focus on a single taxon

or species (i.e., sea turtles). These focused studies are

critical to understanding potential population-level

effects of bycatch from a particular fishery, but fail to

capture the full bycatch seascape that includes many

species of long-lived oceanic vertebrates encountering

multiple gear types as they travel across large marine

ecosystems.

Whereas single-species bycatch studies are critical for

understanding fisheries impacts on particular popula-

tions (Jaramillo-Legorreta et al. 2007), the simultaneous

analysis of bycatch events for multiple species more

accurately reflects the challenges faced by fisheries

management agencies (Hall 1996). Previous research

suggests that bycatch management strategies that focus
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solely on a single species or taxon may lead to additional

bycatch problems (Baum et al. 2003). For instance,

closing a fishing ground to reduce bycatch of species A

may result in the redistribution of fishing effort in areas

that increase bycatch of species B.

Identifying the spatial pattern of bycatch events serves

several purposes. It describes spatial locations of

persistent bycatch events for a species of conservation

concern. If standardized for the distribution of fishing

effort, this can point to aggregations of bycatch-

impacted species. From a multispecies perspective,

spatial analyses can highlight bycatch ‘‘hotspots’’ where

fishing gear are encountering multiple vulnerable spe-

cies. Although there are challenges in hotspot designa-

tion (defined as areas that exceed a specified threshold;

Kareiva and Marvier 2003), identifying hotspots is an

important step to understanding anomalous spatial

patterns in complex natural systems and can facilitate

efficient and effective conservation planning (Nelson

and Boots 2008). From a fisheries management and

economic perspective, the distribution of bycatch

relative to target catch will influence the effectiveness

and costs associated with different mitigation strategies

(Hall and Mainprize 2005).

Here we consider the spatial distribution and patterns

of bycatch events within and among species, focusing

our analyses on sea turtles, seabirds, and marine

mammals at a local oceanographic scale (;100–1000

km). We compare the results from multiple analyses that

sequentially integrate additional information to explore

the differences in utility and potential applications

across these methods. These analyses address three

questions: (1) Does bycatch occur randomly across

fishing locations? (2) Are there spatially persistent areas

of high bycatch within or among species? (3) What is the

relationship between bycatch and target catch? Our

analyses represent a novel application of point and area

pattern analyses (Fortin and Dale 2005, Nelson et al.

2006) to the study of bycatch and demonstrate their

utility to inform bycatch management and mitigation

for vulnerable species and, ultimately, to promote

sustainable fisheries.

METHODS

We used National Marine Fisheries Service observer

data at the fishing set level from the U.S. Pacific

(Hawaiian) and Atlantic pelagic longline fisheries,

collected between 1992 and 2005 in the Atlantic

(.4000 sets) and between 1994 and 2000 in the Pacific

(.3500 sets). Each of the data sets spans 408 or more of

latitude and longitude (Fig. 1).

Pelagic longlines consist of a mainline from which

secondary lines, called gangions, hang. Hooks are found

at the end of each gangion. The mainline is deployed to a

specific depth by the number of floats on the line and

line weights. The mainline lengths ranged from 6 to 86

km in the Pacific (mean¼ 38.7 km), from 1 to 60 km in

the Atlantic (mean ¼ 24.9 km). The spatial scale of our

analyses is based on these gear profiles: we set our

minimum spatial lag (18 or ;100 km) to be larger than

the maximum length of mainline gear to avoid analyses

at a higher resolution than available data. Given the

length of longline sets and the large spatial extent of the

processes under consideration (biogeographic distribu-

tions of marine species, patterns of oceanographic

variables), we defined local scale as 100–1000 km. A

bycatch event was defined as a fishing set with bycatch

of marine mammals, seabirds, or sea turtles. Sharks were

excluded from the present study because for the data sets

in these analyses, sharks may represent commercially

viable catch and thus did not meet our definition of

bycatch (see Introduction).

FIG. 1. Distribution of observed fishing sets with bycatch (open triangles) and without bycatch (solid circles) in both the
Atlantic Ocean (left) and Pacific Ocean (right). In the Pacific, the Hawaiian Islands are shown near the center of the map.
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For these analyses, we grouped the data over time,

treating each gear deployment (fishing set) as an

observation. While we were unable to comprehensively

test the assumption that the data were stationary over

time, dividing the data sets up into two equal-length

time periods (seven years in the Atlantic and four years

in the Pacific) yielded results similar to those found using

the entire data sets. As such, we were able to rule out the

existence of major temporal nonstationarity in the data.

Locations of fishing sets and bycatch events can be

considered a population of marked points (fishing sets

with or without bycatch) and analyzed using point

pattern statistics. Alternatively, these point pattern data

can be summarized as densities or rates of fishing sets

and bycatch events per unit area and analyzed using area

pattern statistics. Frequently, spatial ecological data can

be viewed in both ways and it is useful to do so (Fortin

and Dale 2005). A criterion for choosing between point

and area statistics is whether the locations represent a

population or a sample. From one perspective the data

are a complete census of all observed fishing sets in the

time period. Thus, point pattern statistics, which deal

with population data, are appropriate. However, it is

common and useful to transform point patterns data to

area patterns, number of events per sample area, and use

area pattern methods to describe their spatial pattern.

Although area pattern methods were developed for

sample data, they can also be used with population data.

Moreover, the fishing sets used in this study can be

viewed as a representative sample of all the fishing sets

that actually occurred in the time period. Although not

every boat has an observer, National Oceanic and

Astmospheric Administration (NOAA) observer pro-

grams strive to stratify observed vessels across fishing

zones.

A major assumption that must be met in spatial

analysis is that the underlying data-generating process is

stationary, i.e., the parameters do not change over

space. Interpreted in the context of this study, the data

set would be stationary if fishing effort and bycatch

species were distributed evenly across the study area, a

clearly unrealistic expectation. However, there are

several ways of dealing with nonstationarity: subsetting

the data into regions, using local statistics, or using

bivariate statistical tests that compare one pattern to an

underlying pattern that is not necessarily random. In an

exploratory analysis we divided the data into subsets

and found no major differences in the results when we

divided the Atlantic data into northern (above 358 N)

and southern (below 358 N) subregions. We also chose

to focus our analyses on spatial patterns that emerge at

smaller spatial scales relative to the entire ocean basin.

Furthermore, we used a bivariate statistical test for our

point pattern analyses and chose a conservative back-

ground distribution for our area pattern analyses.

The primary objective of this study was to illustrate

the use of complementary methods for describing the

spatial distribution and pattern of fisheries bycatch. To

that end, we followed a stepwise approach that

integrated additional information at each level of

analysis. In step 1, we asked whether bycatch events

are clustered and at what scales, given the underlying

pattern of fishing locations using a bivariate point

pattern O-ring statistic (Wiegand and Moloney 2004).

Step 2 considered the spatial patterns of standardized

bycatch rates (bycatch per unit effort, BPUE) as an area

pattern and used the Moran’s I statistic (Moran 1948) to

assess whether high bycatch areas are clustered and at

what scales clusters occur. Step 3 employed these same

analyses with data from multiple species, and step 4

considered multispecies bycatch relative to target catch

yield.

For steps 1 and 2 we analyzed single-species patterns

for each of the four most commonly caught non-fish

bycatch species, which together represented 93.9% and

86.5% of all sea turtle, seabird, and marine mammal

bycatch individuals in the Pacific and Atlantic, respec-

tively (Appendix A). These were Black-footed Alba-

trosses (Phoebastria nigripes), Laysan Albatrosses

(Phoebastria immutabalis), loggerhead turtles (Caretta

caretta), and leatherback turtles (Demochelys coriacea)

in the Pacific Ocean and loggerhead turtles, leatherback

turtles, pilot whales (Globicephala melaena), and Risso’s

dolphins (Grampus griseus) in the Atlantic. All afore-

mentioned species have been recognized as species of

conservation concern because of mortality due to

longline fisheries (NMFS 2001, 2004). The multispecies

analyses (step 3) included the aforementioned taxa as

well as any other non-fish species recorded as bycatch

(Appendix A). In step 4, target catch was defined as the

number of swordfish and tuna individuals captured.

Step 1: Does bycatch occur randomly

across fishing locations?

The first question treats bycatch as a binary variable

(i.e., presence or absence of bycatch in fishing sets) and

considers whether bycatch events of an individual

species occur as a random subset of all fishing locations

across a range of spatial scales. In other words, when we

control for the fact that fishing sets are distributed

nonrandomly across space, can we detect a nonrandom

pattern in the distribution of bycatch events? If so, are

these events clustered or overdispersed across different

spatial lags? Significant clustering would suggest that

certain fishing grounds are more likely to yield a bycatch

encounter, whereas significant overdispersion would

suggest that bycatch encounters are evenly or regularly

distributed among fishing locations.

To address this question, we used the O-ring statistic

(also referred to as g12(r), or the neighborhood density

function, NDF), testing the null hypothesis that bycatch

events are a random subset of all gear deployments. This

point pattern statistic calculates the density of events of

type B (i.e., bycatch events) across a range of distances r

from an arbitrary event of type B, given a nonrandom

background distribution of events of type A (i.e., fishing
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sets). Simulations involving random labeling of points

allow for statistical inference by comparing the observed

pattern to one that would be expected if the null

hypothesis were true (Galiano 1982, Condit et al. 2000,

Wiegand and Moloney 2004, Perry et al. 2006). This

method is analogous to Ripley’s K12(r) with circles of

radius r replaced by annular rings with radius r. We

chose to use the O-ring statistic in lieu of the more

commonly applied Ripley’s K statistic because the O-

ring statistic focuses attention on specific distance

classes, whereas the cumulative K function confounds

effects at larger distances with effects at shorter

distances (i.e., successive values of Ripley’s K are

autocorrelated; Wiegand and Moloney 2004, Perry et

al. 2006).

We calculated g12(r) for 0.5 decimal degree (;50 km)

increments (r) from 18 to 208, although we focus attention

on local patterns from 18 to 108 (;100–1000 km) as the

most relevant scale from the perspective of these pelagic

fisheries. Values of g12(r) below expectation (deviation

from zero) indicate that bycatch events separated by a

distance r are more clustered than expected by chance

relative to a background spatial pattern determined by

the distribution of fishing sets. Conversely, g12(r) values

above expectation indicate overdispersion (Appendix B).

Values were calculated and compared with simulation

envelopes akin to 95% confidence intervals for the

expected pattern, estimated by Monte Carlo simulation

(n ¼ 100), using the R software package ‘‘ads’’ (R

Development Core Team 2008).

Due to simultaneous inference, the simulation enve-

lopes generated during this and other steps cannot be

interpreted as confidence intervals; the type I error is

.5% (Loosmore and Ford 2006). A statistically rigorous

approach would be to use an overall goodness-of-fit test

(a single summary test statistic) that results in an

appropriate alpha level by comparing summed values

for the entire data set. However, it is clear from the

extremely small P values we obtained that such a test

would indicate an overall result that is statistically

significant. Such a test does not allow one to determine

the scale(s) at which a certain process departs from the

null hypothesis, which was our primary objective. We

therefore retain the simulation envelopes as a guide for

interpreting the scales at which bycatch events cluster.

Step 2: Are high bycatch rates clustered?

The second analysis assessed the distribution of

bycatch rates of individual species, BPUE, calculated

as the number of bycatch individuals caught divided by

the number of hooks deployed. Distinguishing between

bycatch rates and events (addressed in step 1) is

important because fishing effort (i.e., number of hooks

deployed), like fishing sets, may be unevenly distributed.

Thus, some areas could have a large number of hooks

and very little bycatch, while other areas could have

relatively few hooks, but high bycatch. In these areas,

bycatch events per vessel may be comparable, but from a

bycatch rate perspective, they could differ considerably.

For this analysis we used an area pattern statistic,

Moran’s I (Moran 1948), a measure of spatial autocor-

relation that allowed us to determine whether areas of

high bycatch rates are clustered. If high bycatch locations

are found near each other more frequently than expected

under the null hypothesis of complete spatial random-

ness (CSR) and low bycatch locations near other low

values, then bycatch rates will exhibit positive spatial

autocorrelation (Bailey and Gatrell 1995). Because the

distribution of bycatch rates is nonnormal and zero-

inflated, we estimated the significance of the Moran’s I

results by simulation. Specifically, bycatch rates were

randomly reassigned to fishing sets to determine what a

random distribution of bycatch rates would be like. In

turn, that distribution, with its pseudo-95% confidence

intervals, was compared with the observed results.

Moran’s I was calculated for lag distances of 1–10 lags

where each lag is 18 (e.g., from 18–108, or ;100–1000

km). We used untransformed BPUE rates for this

analysis as any transformation or smoothing of values

based on neighboring cells (sensu Sims et al. 2008)

would potentially inflate spatial autocorrelation among

neighboring events. Moran’s I was calculated in R using

the package spdep (Bivand 2002). In addition to the

Moran’s I analyses, we also include a Moran scatterplot

and map to identify areas where similar bycatch rates

are clustered. A Moran scatterplot displays the spatial

correlation (local Moran’s I value) between a point and

its neighbor(s), dividing all points into four categories,

each of which is displayed in separate quadrants of the

scatterplot (e.g., high bycatch near high bycatch values,

high : low, low : high, and low : low). For these analyses,

we identified clusters of high-bycatch points as those

occurring in the upper right quadrant of the scatterplots

(e.g., high : high). Once identified, these points can be

located on a map to determine the prevalence and

distribution of areas of high bycatch (i.e., possible

bycatch rate hotspots). Since our objective was to

compare results across methods rather than identify

specific locations, we did not attempt to identify

statistically significant data points, although this would

be possible using local indicators of spatial association

(LISA; Anselin 1995).

It is important to note that area pattern statistics such

as Moran’s I can be calculated for any user-defined set

of fishing events and neighborhood distances. The most

intuitive comparison is between all bycatch events and

all fishing sets included in the data set to determine

whether bycatch events cluster with respect to fishing

events. However, this metric may be influenced by the

nonrandom distribution of fishing effort combined with

the large number of zero bycatch events, which may

result in clustering of fishing sets without bycatch (i.e.,

spatial correlation of zero values as a result of spatial

autocorrelation in fishing effort). Since this step

addressed the question ‘‘Do high bycatch rates cluster
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together?,’’ we focused our analyses only on fishing sets

involving a bycatch event. This allowed us to investigate

whether high bycatch rates for a species cluster relative

to all bycatch events and provided a more conservative

analysis of potential clustering. In keeping with our

focus on local-scale patterns, we defined a distance-

based spatial neighborhood as 18 for the Moran’s I

analyses and we used the first nearest neighbor for the

Moran scatterplots (a 18 radius did not always yield a

neighbor value, a requirement for the Moran scatter-

plot).

Step 3: Pattern analyses of multispecies bycatch

For a multispecies perspective, we repeated the three

analyses described above (O-ring statistic, Moran’s I,

and Moran scatterplot/map) on all species of non-fish

bycatch captured in each ocean region (see Appendix

A). Previous research has rarely addressed bycatch

patterns at the level of community or assemblage. Thus,

while the analyses in this step are redundant, the results

are not. Indeed, from a manager’s perspective, charged

with assessing the ecosystem-level effects of fishing, this

approach may be more relevant than those reported in

steps 1 and 2.

We used the presence or absence of bycatch as a

binomial variable for the O-ring analysis and number of

bycatch species per unit effort (SPUE), the number of

species of bycatch caught divided by the number of

hooks deployed, for the Moran’s I and Moran

scatterplot/map analyses. Species per unit effort offers

a simple index of multispecies bycatch that intentionally

ignores variation in abundance among species, thus

controlling for that variation. These approaches allowed

for a multifaceted analysis of bycatch at the community

level and facilitated comparison with the single-species

patterns described in steps 1 and 2.

In addition to assessing patterns of spatial correlation,

we used inverse distance-weighted bilinear interpolation

to plot SPUE values on a map using the R software

package ‘‘akima.’’ In the case of large data sets with

many points, interpolation maps can improve visualiza-

tion of the phenomenon under study. As such they

provide a complement to the Moran scatterplot maps

for identifying potential bycatch hotspots.

Step 4: Bycatch relative to fishing activity

Target catch per unit effort (CPUE, calculated as

number of swordfish and tuna individuals divided by the

number of hooks deployed) also varies in space. While

this variation has received considerable attention from

fishery scientists and fishers alike, it has rarely been

related to the distribution of bycatch, particularly at a

multispecies level. Do target catch rates and multispecies

bycatch rates show similar patterns? Are they correlat-

ed? Given that maximizing CPUE is an important

fisheries goal and minimizing bycatch is an important

conservation goal, we set out to describe the relationship

between these two factors. Specifically, we analyzed the

standardized number of bycatch species relative to

abundance of target catch (SPUE/CPUE). Identifying

low values of this metric and whether they cluster

together in space is an important step towards maxi-

mizing the efficiency of a fishery while minimizing the

impact of fisheries on vulnerable species.

For this analysis we calculated the spatial relation-

ships between bycatch and catch by considering the

spatial autocorrelation of SPUE/CPUE using Moran’s

I. We used number of target individuals to represent

catch instead of target catch mass because mass data

were not available. For this step, we used all sets with

nonzero target catch.

RESULTS

Step 1: Does bycatch occur randomly

across fishing locations?

Across the two ocean basins we found clear evidence

of nonrandom spatial patterns in bycatch events at a

local scale for all species examined. For the majority of

species, bycatch locations were clustered at smaller

distance lags (18–108), except for pilot whales and

Risso’s dolphins in the Atlantic that exhibited over-

dispersion among bycatch locations, at least at the

shortest lags (Fig. 2). Where significant clustering

occurred, it was strongest for all species at the shortest

distance lag (d¼ 18 or ;100 km) and declined gradually

with increasing distance (Appendix B). Even when we

control for the nonrandom distribution of fishing sets,

bycatch of sea turtles and albatrosses still displays a

FIG. 2. Point pattern of bycatch based on the O-ring
statistic, g12(r), for individual species in each of the ocean
basins. Values were calculated at 0.58 increments for distances
ranging from 18 to 208. Gray shading indicates that the
distribution of bycatch events relative to all fishing sets does
not differ significantly from the null hypothesis of random
labeling at that scale, white indicates that it is significantly
overdispersed, and black shading indicates that events are
significantly clustered.
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clustered distribution, particularly at small spatial

scales, indicating that fishing in certain locations is

more likely to result in a bycatch event.

Step 2: Are high bycatch rates clustered?

Bycatch rates (BPUE) analyzed using Moran’s I

showed significant positive spatial autocorrelation for

loggerheads and Laysan and Black-footed Albatrosses

in the Pacific (Fig. 3). Again, clustering was strongest at

the shortest distance lag and declined with distance.

Leatherback bycatch, on the other hand, did not show

significant spatial patterning beyond the smallest spatial

lag. In the Atlantic Ocean, high bycatch levels were

clustered to scales of 28 or more for all four species

(loggerheads, leatherbacks, pilot whales, and Risso’s

dolphins; Fig. 3).

FIG. 3. Autocorrelation of bycatch for individual species in each of the ocean basins. Moran’s I values were calculated at 18

increments for distance lags ranging from 18 to 108. Solid circles indicate pseudo-95% confidence intervals that did not overlap zero;
open cirlces indicate pseudo-95% confidence intervals that overlapped zero. Values significantly greater than zero indicate positive
spatial autocorrelation of bycatch (i.e., clustering), whereas values significantly less than zero indicate negative spatial
autocorrelation of bycatch (i.e., overdispersion).

FIG. 4. Moran scatterplot and map for loggerhead turtles in the Atlantic Ocean. The x-axis (Var) represents the standardized
bycatch rate for a point, while the y-axis (W 3 var) represents the standardized bycatch rate for its nearest neighbor. Light gray
points in the scatterplot and on the map correspond to observed fishing sets that had above-average values for bycatch per unit
effort and whose nearest neighbors also had above-average values (i.e., putative bycatch hotspots). The values in this figure are
standardized such that the mean bycatch rate equals zero; hence the line of points at the far left of the graph represents those fishing
sets that had zero bycatch, while the line of points at the bottom of the graph represents those nearest-neighbor fishing sets that had
zero bycatch.
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The Moran’s I scatterplots and maps (shown for

loggerheads in the Atlantic) also depicted the positive

spatial correlation among high bycatch events and

identified these high bycatch locations (Fig. 4). Similar

analyses for other species suggested areas of species-

specific high bycatch based on first-nearest-neighbor

values (Appendix B). Thus, these analyses reveal that

BPUE is spatially clustered, suggesting that regions of

high bycatch relative to fishing effort exist at the

individual species level.

Step 3: pattern analyses of multispecies bycatch

The point pattern generated by all bycatch species,

analyzed using the O-ring statistic, showed significant

clustering of bycatch events up to distance lags of 98 or

108 in both ocean basins (Fig. 5). Clustering was

strongest at the shortest distance lags (peaking at d ¼
18 or ;100 km) and declined gradually with increasing

distance (Appendix B). In both the Pacific and the

Atlantic, Moran’s I results also suggest positive spatial

autocorrelations in SPUE from 18 to 48 or 58 (;100–400

or 500 km; Fig. 6). Therefore, the results at a community

level parallel those at the individual species level,

suggesting that certain areas are prone to frequent

bycatch events and/or high multispecies bycatch rates

relative to fishing effort.

In the Atlantic, the interpolated SPUE maps (Fig. 7)

identified three primary locations of multispecies by-

catch events: Georges Banks (408–508 N, 408–508 W), the

northern part of the Greater Antilles (208–308 N, 708–808

W), and the eastern part of the Lesser Antilles (108–208

N, 508–608 W). The Moran scatterplot map (Fig. 7) only

picked up two of these locations (Georges Bank and the

northern part of the Greater Antilles), but additionally

suggested the eastern seaboard of the United States

(308–408 N, 688–788 W) as an area of high multispecies

bycatch. The discrepancy among maps is likely due to

low sampling effort in the eastern part of the Lesser

Antilles, resulting in isolated high bycatch rate values

(recall that we used quadrant I of the Moran scatterplot

and map, which identifies those areas of high bycatch

that are adjacent to other high-bycatch locations). The

high-bycatch area identified by the Moran scatterplot

map along the eastern seaboard of the United States was

absent in the interpolation map. This is likely due to the

linear nature of the fishing effort along the eastern

seaboard, resulting in many grid cells occurring adjacent

to regions with zero fishing effort and bycatch.

The interpolation SPUE map of the Pacific (Fig. 8)

highlights three primary locations of multispecies by-

catch events: northeast of the Hawaiian Islands (258–358

N, 1358–1458 W), northwest of the Hawaiian Islands

(258–358 N, 1658–1758 W), and north-northwest of the

Hawaiian Islands (408–458 N, 1608–1808 W). As in the

Atlantic, one of these areas (northeast of the Hawaiian

Islands) was not identified by the Moran scatterplot and

map, also likely as a result of low fishing effort.

Step 4: bycatch relative to fishing activity

Although the focal bycatch species, as measured by

SPUE, exhibited clustering in both ocean basins, as

shown with the density maps (Figs. 7 and 8), the

FIG. 6. Autocorrelation of species per unit effort (SPUE) and species vs. catch (SPUE/CPUE) in each of the ocean basins. See
Fig. 3 legend for an explanation of fill patterns.

FIG. 5. Point pattern of bycatch based on the O-ring
statistic, g12(r), for all bycatch species in each of the ocean
basins. See Fig. 2 legend for an explanation of shading schemes.
SPUE is species per unit effort.
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Moran’s I analysis for SPUE relative to CPUE indicates

clustering in the Pacific, but not the Atlantic. This

suggests that areas of high bycatch relative to low target

catch cluster in the Pacific Ocean, but not in the

Atlantic.

DISCUSSION

The objective of this study was twofold: to explore

spatial patterning of bycatch in two major ocean basins

and to detail an approach to analyzing spatially explicit

bycatch data. To illustrate this, we went through a four-

step process that addressed increasingly integrated

questions at each level of analysis. In step 1, we tested

whether single-species bycatch events were clustered in

space with respect to all fishing sets. This required a

bivariate analysis that is distinct from the univariate

analyses often used in point pattern analysis of
ecological data. The distribution of fishing sets in each

ocean basin is, in itself, nonrandom, and a univariate

analysis (such as a Ripley’s K function) would be

inappropriate because it cannot tease apart the patterns

in the distribution of fishing sets from that of the
bycatch. A second pitfall that we avoided was the

indiscriminate use of Ripley’s K, because of its tendency

to confound effects at larger distances with those at

shorter distances (Wiegand and Maloney 2004, Perry et

al. 2006). We used the O-ring statistic because it

FIG. 7. (Top) Interpolated map and (bottom) Moran
scatterplot map of species per unit effort (SPUE) for the
Atlantic Ocean. In the interpolated map, the lighter areas have
higher SPUE values, whereas the darker areas have lower
SPUE values. Yellow points in the scatterplot correspond to
observed fishing sets that had above-average values for bycatch
per unit effort and whose nearest neighbors also had above-
average values (i.e., putative bycatch hotspots).

FIG. 8. (Top) Interpolated map and (bottom) Moran
scatterplot map of species per unit effort (SPUE) for the Pacific
Ocean. In the interpolated map, the lighter areas have higher
SPUE values, whereas the darker areas have lower SPUE
values. See Fig. 7 for interpretation of the Moran scatterplot
map.
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calculates correlation based on limited range of distance

classes.

Employing these precautionary measures, we found

clear evidence of spatial patterns, although the strength

and nature of the patterns varied among species. All

four of the species examined in the Pacific (Laysan

Albatross, Black-footed Albatross, leatherback turtles,

and loggerhead turtles) showed strong clustering of

bycatch events at scales of 18–108. In the Atlantic, sea

turtle bycatch displayed strong clustering of bycatch

events, whereas pilot whales showed dispersion of

bycatch events and Risso’s dolphins showed no patterns

at most distance lags. The two sea turtles, found in both

ocean basins, displayed similar patterns in each basin.

While important, the results of step 1 are not very

surprising; researchers who work on bycatch have long

known that it is not likely to be a random event. Because

the underlying but unknown distribution of bycatch

species may be clustered in time and space, step 2 refined

this perspective by considering whether high bycatch

locations cluster together. Addressing this question

required a different statistical approach, one that could

accommodate quantitative input variables (e.g., BPUE),

such as Moran’s I and Moran scatterplot maps. The

clustering of high bycatch rates is different from the

clustering of bycatch events because it points to areas of

special concern, areas not only where any bycatch

occurs but where high bycatch rates are likely among

neighboring bycatch locations. This stepwise approach

demonstrates that clustering in bycatch locations does

not equate to clustering in bycatch rates. Consider two

examples from our study: Risso’s dolphin bycatch

locations were not clustered, but high bycatch locations

were. Conversely, leatherback bycatch events in the

Pacific Ocean were clustered, but bycatch rates were not.

Bycatch rates for all of the other species did display

positive spatial correlation, suggesting that certain

regions of the ocean are especially prone to above-

average bycatch.

Because multispecies bycatch patterns have rarely

been considered, step 3 represents an important exten-

sion of the approaches described in steps 1 and 2.

Identifying multispecies bycatch areas is a key compo-

nent to maximizing the efficiency of management

strategies while avoiding the promotion of solutions

for one bycatch species that imperils another bycatch-

impacted species. If bycatch of the different taxa were

clustered in space, managers would likely adopt a

different mitigation strategy (e.g., a time/area closure)

than if bycatch of the different species were dispersed

(e.g., gear modification). In our study there was overlap

across species, and specific areas of multispecies bycatch

were identified in each ocean basin.

For steps 3 and 4 we considered variables that looked

at bycatch occurrences across species and taxa weighting

the bycatch occurrence for all species equally. Another

approach would be to weight bycatch rates by the

conservation status of impacted species to focus

management actions and strategies on species of greatest

conservation concern. A comparison of the interpolated

maps and the Moran’s I scatterplot maps identified

congruent areas of multispecies bycatch. However, the

Moran scatterplot maps were more likely to detect high-

bycatch locations when fishing effort was unevenly

distributed (e.g., along the eastern seaboard), while the

interpolated maps were more likely to detect high

bycatch locations in areas of low fishing effort (e.g.,

the eastern part of the Lesser Antilles).

In the final step, we incorporated a measure of target

catch into our analyses of spatial patterning. Given the

importance of fisheries to local and national economies,

effective bycatch reduction efforts should minimize

negative effects on catch of the target species (Hall

1996). Analyses of the ratio of bycatch species to target

catch suggested that, in the Pacific Ocean, there are

areas of high bycatch and low target catch, i.e., areas

where fishers capture relatively few tuna and swordfish

per set, but multiple species of sea turtles, seabirds,

and/or marine mammals. While no relationship between

the number of bycatch species and the number of target

catch individuals emerged in the Atlantic, the pattern

may be strengthened if data on target mass, a better

proxy for yields and profits, were available rather than

number of target individuals. Areas of high bycatch and

low target catch point to inefficiencies in the distribution

of fishing effort. A preliminary evaluation in the Pacific

suggests that if these bycatch areas are temporally

persistent, minor spatial restrictions of overall fishing

effort (;5–10%) could lead to relatively large reductions

in bycatch abundances (;30–40%). From a manage-

ment perspective, this suggests that spatial closures may

be effective for some ocean regions but also points to

areas where multispecies bycatch and target catch are

not tightly correlated. Although previous research has

explored the effects of reductions in fishing effort

(Goodyear 1999), the spatial contiguity of these areas

was not explored. By identifying underlying spatial

patterns, the approach presented here can incorporate

both contiguity and fishing efficiency, highlighting areas

where it is both biologically and economically reason-

able to apply management efforts.

A logical follow-up to the analyses we present here

would be to use reserve design tools for incorporating

the spatial distribution of bycatch species into time–area

closure design. For example, C. D’Agrosa and col-

leagues (C. D’Agrosa, A. J. Read, P. N. Halpin, and

M. A. Hall, unpublished manuscript) used a spatial opti-

mization approach to determine how much target catch

would be reduced for a given level of bycatch reduction.

They found that contiguous time–area closures can

reduce bycatch of leatherbacks and blue sharks consid-

erably without much of an effect on target catch.

Our analyses focus on a ubiquitous resource use

question: What is the current overlap of resource users

(fisheries) and a protected resource (bycatch species)?

This question does not, however, address the funda-
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mental question of where critical habitat for bycatch

species occurs. Bycatch hotspots have probably changed

over time as fisheries have shifted target species and

target catch has changed. Additionally, fisheries sample

bycatch species only where fisheries operate, which

represent a non-random sample of the oceans. As such,

estimating the distribution of bycatch and current

locations of bycatch hotspots does not necessarily

represent pre-exploitation distributions nor does it

address habitat suitability.

We believe that the approach described in this study

represents a useful starting point for researchers

interested in exploring spatial patterns in fisheries

bycatch. Whether this approach could be used as a

real-time mitigation tool would depend on the presence

of adequate on-board observer coverage (Gilman et al.

2006). At present, the fisheries analyzed in this paper

have observers on ;5% of fishing trips, as compared

with the 100% observer coverage reported for those

fisheries that use a fleet communication system to avoid

bycatch hotspots. Even then, the data that accrue over a

few days or weeks of fishing may be insufficient for these

types of data-intensive analyses. Our analytical ap-

proach should be considered as one component of a

larger framework for analyzing fisheries bycatch in

space and time. That framework could include existing

fleet communication systems for dealing with and

reacting to short-term bycatch hotspots, exploratory

spatial analysis of long-term data as demonstrated in

this paper, and, ultimately, predictive models that

forecast bycatch hotspots using oceanographic data.

A major assumption for all pattern analyses is that the

patterns under consideration are stationary, in other

words, the processes driving the observed patterns are

constant across space and time. In order to minimize the

effects of spatial non-stationarity we focused our

analyses on relatively small spatial neighborhoods

(100–1000 km) and used robust statistical methods.

Testing for and dealing with temporal stationarity was

beyond the scope of this paper, though we were able to

rule out the existence of major temporal trends in the

data by subdividing the Atlantic and Pacific data sets

into two equal-length periods. Spatial patterns in these

subsets were similar to the data set as whole. Neverthe-

less, if a goal is to apply these results to the future, the

assumption of temporal stationarity should be tested

explicitly to ascertain whether spatial patterns in

bycatch change over time. Finally, an important

challenge involves not just testing the aforementioned

assumptions and documenting spatiotemporal patterns

in bycatch, but also correlating bycatch rates with

oceanographic variables such as sea surface tempera-

ture, productivity, depth, etc. It is likely that these

factors drive the distribution of bycatch species and/or

their prey and could be used to forecast areas of likely

fisheries–bycatch interactions.

Prioritizing effort, maximizing efficiency, and mini-

mizing costs are mantras in both conservation and

fisheries management. Identifying the underlying spatial

patterns of fisheries bycatch is a promising way of

determining areas of overlap among species of conserva-

tion concern and fisheries, a critical step towards

developing more efficient conservation strategies de-

signed to protect species diversity. Towards this end, we

have presented an approach for the analysis of spatial

patterns of bycatch, using data from the U.S. Atlantic

and Pacific longline fisheries. Our analyses focused

attention on spatial patterning in bycatch events and

bycatch rates for individual species of conservation

concern, as well as all non-fish bycatch species. Addi-

tionally, we linked spatial patterns in bycatch with fishing

production and identified areas of low fishing efficiency

(i.e., zones in which the ratio of catch per unit effort of the

fisheries target is low relative to bycatch per unit effort).

By contributing to a more synoptic view of the bycatch

seascape, our results illustrate the value of spatial pattern

analysis. This approach represents a key component of a

larger framework intended to provide a full description of

the spatiotemporal distribution of bycatch and the

processes that underlie fisheries–bycatch interactions.
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APPENDIX A

Description of the bycatch, target catch, and fishing effort (Ecological Archives A019-038-A1).

APPENDIX B

The O-ring statistic, g12(r), vs. time, Moran scatterplots, and Moran scatterplot maps (Ecological Archives A019-038-A2).
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